

AEROSPACE	
MATERIAL SPECIFICATION	

AMS5966™		
Issued	19	

 Issued
 1997-04

 Revised
 2019-03

REV. C

Superseding AMS5966B

Nickel Alloy, Corrosion and Heat Resistant, Welding Wire 50Ni - 20Cr - 20Co - 5.9Mo - 2.2Ti - 0.45Al Consumable Electrode or Vacuum Induction Melted (Composition similar to UNS N07263)

RATIONALE

AMS5966C prohibits unauthorized exceptions (3.8), revises reports (4.4) and identification (5.3.1), and is a Five-Year Review and update of this specification.

- 1. SCOPE
- 1.1 Form

This specification covers a corrosion and heat-resistant nickel alloy in the form of welding wire.

1.2 Application

This wire has been used typically as filler metal for gas-tungsten-arc or gas-metal-arc welding of corrosion and heat-resistant nickel alloys of similar composition where the weld area is required to have strength and corrosion resistance comparable to those of the base metal, but usage is not limited to such applications.

2. APPLICABLE DOCUMENTS

The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply.

2.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or +1 724-776-4970 (outside USA), <u>www.sae.org</u>.

- AMS2269 Chemical Check Analysis Limits, Nickel, Nickel Alloys, and Cobalt Alloys
- AMS2371 Quality Assurance Sampling and Testing, Corrosion and Heat-Resistant Steels and Alloys, Wrought Products and Forging Stock
- AMS2813 Packaging and Marking of Packages of Welding Wire, Standard Method
- AMS2814 Packaging and Marking of Packages of Welding Wire, Premium Quality

SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.

TO PLACE A DOCUMENT ORDER:

Tel: 877-606-7323 (inside USA and Canada) Tel: +1 724-776-4970 (outside USA) Fax: 724-776-0790 Email: CustomerService@sae.org http://www.sae.org SAE values your input. To provide feedback on this Technical Report, please visit http://standards.sae.org/AMS5966C

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

Copyright © 2019 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

SAE INTERNATIONAL	AMS5966™C	Page 2 of 7

- AMS2816 Identification, Welding Wire, Tab Marking Method
- AMS2819 Identification, Welding Wire, Direct Color Code System
- ARP1876 Weldability Test for Weld Filler Metal Wire
- ARP1917 Clarification of Terms Used in Aerospace Metals Specifications
- ARP4926 Alloy Verification and Chemical Composition Inspection of Welding Wire
- 2.2 ASTM Publications

Available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, <u>www.astm.org</u>.

- ASTM E354 Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel, and Cobalt Alloys
- 3. TECHNICAL REQUIREMENTS
- 3.1 Wire Composition

Shall conform to the percentages by weight shown in Table 1, determined by wet chemical methods in accordance with ASTM E354, by spectrochemical methods, or by other analytical methods acceptable to purchaser.

Min	Max
0.04	0.08
	0.60
	0.40
	0.015
	0.007
19.00	21.00
19.00	21.00
5.60	6.10
1.90	2.40
0.30	0.60
2.40	2.80
	0.70
	0.005
	0.20
	0.002
	0.0001
	0.0005
remainder	
	Min 0.04 19.00 19.00 5.60 1.90 0.30 2.40 remainder

Table 1 - Composition

3.1.1 Chemical analysis of initial ingot, bar, or rod stock before drawing is acceptable provided the processes used for drawing or rolling, annealing, and cleaning are controlled to ensure continued conformance to composition requirements.

3.1.2 Check Analysis

Composition variations shall meet the applicable requirements of AMS2269. No variation over maximum is permitted for lead, bismuth, and silver.

SAE INTERNATIONAL

AMS5966™C

3.2 Melting Practice

The alloy shall be produced by multiple melting using consumable electrode practice in the remelt cycle or shall be induction melted under vacuum. If consumable electrode melting is not performed in vacuum, electrodes which have been produced by vacuum induction melting shall be used.

3.3 Condition

Cold worked, bright finish, in a temper, and with a surface finish which will provide proper feeding of the wire in machine welding equipment.

3.4 Fabrication

- 3.4.1 Wire shall be formed from rod or bar descaled by a process which does not affect the composition of the wire. Surface irregularities inherent with a forming process that do not tear the wire surface are acceptable provided the wire conforms to the tolerances of 3.7.
- 3.4.2 Butt welding is permissible provided both ends to be joined are alloy verified using a method capable of distinguishing the alloy from all other alloys processed in the facility, or the repair is made at the wire processing station. The butt weld shall not interfere with uniform, uninterrupted feeding of the wire in machine welding.
- 3.4.3 In-process annealing, if required, between cold rolling or drawing operations, shall be performed in vacuum or protective atmospheres to ensure freedom from the surface oxidation and absorption of other extraneous materials.
- 3.4.4 Residual elements, drawing compounds, oxides, dirt, oil, dissolved gasses, and other foreign materials picked up during wire processing that can adversely affect the welding characteristics, the operation of the equipment, or the properties of the weld metal, shall be removed by cleaning processes that will neither result in pitting nor cause gas absorption by the wire or deposition of substances harmful to welding operations.
- 3.5 Properties

Wire shall conform to the following requirements:

3.5.1 Weldability

Melted wire shall flow smoothly and evenly during welding and shall produce acceptable welds. ARP1876 may be used to resolve disputes.

3.5.2 Spooled Wire

Shall conform to 3.5.2.1, 3.5.2.2, and 3.5.2.3.

3.5.2.1 Winding

Filler metal in coils and on spools shall be wound so that kinks, waves, sharp bends, overlapping, or wedging are not encountered, leaving the filler metal free to unwind without restriction. The outside end of the electrode (the end where welding is to begin) shall be identified so it can be located readily and shall be fastened to avoid unwinding. The winding shall be level winding.

3.5.2.2 Cast

Wire, wound on standard diameter spools as shown in Table 2, shall have imparted to it a curvature such that a specimen sufficient in length to form one loop with a 1-inch (25-mm) overlap, when cut from the spool and laid on a flat surface, shall form a circle (cast) within the limits shown in Table 2.